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Abstract

A method is presented for sub-pixel mapping and classification in hyperspectral imagery, using learned block-

structured discriminative dictionaries, where each block is adapted and optimized to represent a material in a compact

and sparse manner. The spectral pixels are modeled by linear combinations of subspaces defined by the learned

dictionary atoms, allowing for linear mixture analysis. This model provides flexibility in the sources representation

and selection, thus accounting for spectral variability, small-magnitude errors, and noise. A spatial-spectral coherence

regularizer in the optimization allows for pixels classification to be influenced by similar neighbors. We extend the

proposed approach for cases for which there is no knowledge of the materials in the scene, unsupervised classification,

and provide experiments and comparisons with simulated and real data. We also present results when the data have

been significantly under-sampled and then reconstructed, still retaining high-performance classification, showing the

potential role of compressive sensing and sparse modeling techniques in efficient acquisition/transmission missions

for hyperspectral imagery.
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Learning Discriminative Sparse Models for

Source Separation and Mapping of

Hyperspectral Imagery

I. INTRODUCTION

Hyperspectral imaging (HSI) systems acquire images in which each pixel contains narrowly spaced measurements

of the electromagnetic spectrum,1 allowing spectroscopic analysis. The data acquired by these spectrometers play

significant roles in biomedical, environmental, land-survey, and defense applications. It contains the geometrical

(spatial) information from standard electro-optical systems, and also much higher spectral resolution, essential for

material identification.

There are numerous intrinsic challenges associated with effective ground mapping and characterization applica-

tions when using overhead HSI, see for example [1]–[3]. The first is the noise of the collected measurements, which

directly affects detection accuracy and sensitivity to low presence of materials. Secondly, the complicated schemes of

energy interaction between the targeted area and the spectrometer, causing the total count of photons at the sensor’s

photoelectric array to include energy from contributing factors from the atmosphere such as aerosols and water

vapor. The third challenge occurs at the surface level, where spatial resolution and reflected light off nonuniform

surfaces generate intrinsic spectral variability associated with each material, and spectral mixing, where each pixel

is often composed of a combination of materials. In this case it is difficult to match the data with controlled

(laboratory) measured spectra. Finally, the high dimensionality of the data coming from a large number of spectral

bands poses challenges in visualization, interpretation, and transmission tasks. Nevertheless, these narrowly spaced

bands are highly-correlated and redundant, which allows one to carefully exploit “blessings” of high dimensionality.

In this work we investigate methods that capitalize on this redundancy to address the processing challenges

of high-dimensional hyperspectral data. In Section II we provide the necessary tools to get appropriate material

representations using sparse coding and dictionary learning techniques. We propose in Section III a material

identification scheme at the sub-pixel level, for remotely sensed HSI using a learned block-dictionary optimized

to represent user-specific classes in a supervised fashion. After presenting experimental results and comparisons

in Section IV, we extend it in Section V to the unsupervised case. The proposed technique efficiently manages

data redundancy and provides a representation of the HSI cube as a sparse linear combination of learned sources

(dictionary atoms), giving meaningful material abundance estimates. The proposed algorithm does not require

explicit dimension reduction or subspace projection preprocessing steps. As we will later see, our methodology has

1Typically within the visible and long wave infrared region (400− 14000 nm).
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several advantages. First, it gives freedom to each pixel to select an appropriate sparsity level, equivalent to the

intrinsic dimensionality and subspace selection, in contrast with standard dimension-reduction algorithms, which

assume a global or semi-global dimensionality for all pixels. Second, our proposed classification approach balances

between nearest subspace, defined by the learned dictionary atoms, and nearest neighborhood classifiers, where the

pixels’ abundance coefficients come from a union of subspaces corresponding to all available materials. Third, we

impose spatial coherence in the sparse modeling-based classification. This efficiently combines spectral and spatial

information by incorporating local and nonlocal connectivity, leading to a grouping criteria that induces a robust

and more stable sparse coding (abundance mapping). The proposed algorithm is tested using synthetic and real data,

and compared with other mapping techniques in sections IV and VI, where we also show that accurate material

identification can be attained even from highly under-sampled data following reconstruction using a probabilistic

framework for compressive sensing [4].

Sumarizing, we make the following main contributions:

• We present a new model for supervised and unsupervised spectral source separation with class-specific spectral

dictionaries (similar to endmembers) that takes advantage of the data redundancy and accounts for high

variability in the materials’ spectral response.

• We address the problem of data acquisition, storage, and transmission by showing that accurate material

identification can be attained with the proposed approach even under very low sampling conditions.

II. HSI MAPPING VIA SPARSE RECONSTRUCTION

We seek a technique capable of identifing the set of materials that best represents each pixel on a given

hyperspectral image. This is, as mentioned above, a non-trivial problem because of the many factors associated with

land remote sensing. We begin with the supervised case, where we know a priori (or at least have a good idea of)

what materials might be present in the scene, and we use this information to make a composition mapping of the

scene. Then, we address the case for which there is no a priori information about these materials, the unsupervised

case.

Let each measured pixel y = [y1, y2, ..., yb] in the hyperspectral image be a vector valued function, yi : <2 →

<, 1 ≤ i ≤ b, where b denotes the number of spectral bands. We stack these pixels in matrix format as Y =

[y1, ...,yn] ∈ <b×n, where n is the total number of available pixels distributed spatially. As previously mentioned,

there are several challenges accompanying HSI that jeopardize precise material identification. HSI is noisy in nature,

so there are differences between the true and the observed signals. In addition, there are distortions associated with

atmosphere suppression models [5] (which convert radiance into reflectance units).2 We assume that the measured

energy Y at the sensor is proportional to the area covered by the (learned) dictionary of materials Ψ and the

reflectivity of the media, which can be modeled as the linear system

Y = ΨA + N,

2Our model is not restricted to work with reflectance units.
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where N is additive noise with bounded energy (‖N‖2F ≤ σ2), Ψ ∈ <b×k is a dictionary (soon to be learned), and

A ∈ <k×n is the associated matrix of coefficients representing the mixture of dictionary atoms when composing

the data. The goal of this work is to learn the dictionary Ψ representing the materials, and their proper combination

A, just from Y (unsupervised case) or from Y and a labeled library of real data (supervised case). We will also

work with significantly under-sampled data Y.

A. Class-Specific Reconstruction

Suppose there are C known classes, each with an associated label j ∈ [1, C]. These classes are represented by

sets of kj basis vectors of the dictionary, or dictionary atoms, such that for the j − th class,

Ψj = [ψj1, ...,ψ
j
kj

] ∈ <b×kj ,∀j ∈ [1, C].

The full dictionary Ψ is composed of the concatenation of these class-dependent dictionaries Ψj . The set of nj

pixels Yj ∈ <b×nj associated with class j has a corresponding matrix of coefficients Aj ∈ <kj×nj such that

(αji ∈ <kj , i = 1, ..., nj)

Aj = [αj1, ...,α
j
nj ],∀j ∈ [1, C].

In other words, each column αji in Aj represents the coding coefficients for one of the pixels in Yj (while the

upper index stands for the class, the lower index stands for the pixel, running from 1 to nj for the class or 1 to

n for the whole data). The full matrix Aj then represents all the coefficients needed for the representation of the

class pixels Yj .

Thus, given C classes, we let the j − th class reconstruction cost function for a signal y from the set of data

points Y, be the minimization of (with respect to αj)

R`2(y,Ψj) = ‖y −Ψjαj‖22, s.t. αj � 0, (1)

where the nonnegativity constraint to αj is to avoid a “negative influence” from the material represented by Ψj

(a�b is an elementwise inequality).

For now, assume that the class (material) representative Ψj is known in advance, for all the classes (all j).

These class representatives may or may not be part of the image. For example, Ψj may correspond to a class

representation derived from the image itself, from another image, or a more generic one such as a spectral library

(where for the j − th class, kj = 1). The coefficients in the matrix Aj quantify the contribution onto each pixel

in Y from each of these classes represented in Ψj (since the coefficients are nonnegative). Assuming kj = 1 (a

class represented by a single atom), one would expect that the label associated with the largest coefficient of the

minimal reconstruction error is the most dominant material in the pixel. A simple way for classifying each pixel, to

its dominant class, after minimizing (1) with respect to αj is by defining a mapping function f(y) : <b → [1, C]

as
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f(y) = {j|R`2(y,Ψj) ≤ R`2(y,Ψi), i 6= j,∀i, j ∈ [1, C]}. (2)

Note that (2) can be viewed as a minimum (squared) Euclidean Distance (ED) classifier. The performance of this

classifier highly depends on how well the classes/materials are represented in Ψ. Moreover, it may occur that the

number of columns in Ψ is larger than the number of bands, to allow for a rich representation of the class/material,

and hence the possibility of many solutions, a matter we will later address by adding more constraints.

Assuming that the class is being represented by a single vector (kj = 1) has several limitations. If Ψ is a spectral

library, gross errors could emerge from the interpolation procedure to adapt the spectral library to the data (or

vice-versa), or as previously mentioned, from atmospheric correction algorithms. In addition, there are numerous

instances of materials encountered in groups. This is typically found in vegetation fields, where there is often a

mixture of soil, leaves, and wood, an issue discussed for example in [1], [6], [7]. Therefore, using a single spectra

in these cases may not be sufficient to represent the class and its expected variability. One important aspect of

high-dimensional spaces is that it is very difficult to completely characterize the classes of interest; i.e., the use of

averaged spectral curves or a single spectra (e.g., from a spectral library) is a limiting factor in the performance of

the classifier (see [8], [9]). With increasing availability of training samples, the problem should become “easier,”

since the class should be able to be better studied and represented. In cases where the data cannot be accurately

characterized by a single averaged spectra, a better representation should be pursued.

If we let kj > 1 in Ψj , we could use all available training data and try to reconstruct the image using this collection

of spectra. For a valid reconstruction, we would need the training data to span the subspace where the class lives. In

most cases, there is not enough information to do this. This discouraging result could be seen from [10], which states

in our case that for an estimator of any Lipschitz function on [0, 1], supE{(Ψα−y)2} ≥ K ·n−
2

(2+b) , n→∞,

where E{·} is the expectation operator, and K is a positive constant. This tells us that the MSE is lower bounded

by a very slow convergence rate in the number of samples relative to the dimension (b-channels). Thus, we would

think that we need an unrealistic amount of samples per class for a reasonable performance, the so called “curse

of dimensionality.” However, it is well known that in high-dimensional spaces, the data tends to concentrate in

the corners of an hypercube (or shell of a hypersphere), so the volume it spans is mostly empty. This phenomena

motivates the search for an optimal subspace where the data lies. In other words, the intrinsic local dimension of

the data is expected to be low, giving hope for learning efficient representations from reasonable amounts of data.

There exist very efficient methods for dimensionality reduction and subspace projection, though only a few

guarantee that all critical information for class separation is preserved. In other words, finding an optimal subspace

at a global level might obviate some details in the data that could be essential for class identification. Linear

methods tend to capture an optimal subspace at a global level, and often fail to preserve the local features. Manifold

learning and kernel method techniques, including multiple versions of Diffusion Maps, LLE and ISOMAP (see for

example [11]–[16]), have been used to improve the capability of feature extraction in HSI. These techniques try to

capture local structure information, but often require a high number of operations (typically quadratic in the number
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of data samples), and suffer from other difficulties like the “out-of-sample” issue [17]. In addition, it becomes difficult

to interpret the resulting transformation in a physical way. We would like to find a representation for each pixel

that could efficiently pursue the appropriate subspace/s, while only losing the least essential information. For that

matter, we do not seek a global dimension reduction approach. We will exploit the data itself and treat it with

model selection techniques that efficiently seek a good trade-off between global and local information.

Furthermore, we will assume that while the amount of different materials in the scene can be large, only a small

quantity of these materials is observed in each pixel, and each material itself lives in a low dimensional subspace.

Thus, mapping HSI pixels is a sparse coding problem, only a few atoms per class-dictionary Ψj are active at a time

(defining the class subspace), and only a few classes j are present per pixel. In [18] the authors showed that if the

output of the classification problem is sparse (only a few of many possible classes is present at a time), then with

overwhelming probability the amount of data needed to learn is significantly reduced. This gives us further hope

into dealing with a relatively low number of training samples while still retaining high classification performance.

Minimizing (with respect to αj) the class reconstruction term (1) is not enough to accomplish this, since it will

typically induce dense solutions, large support of nonzero coefficients. We take care of this sparsity modeling by

the use of a shrinkage-inducing complexity term as detailed next.

B. Accounting for Sparsity in the Reconstruction Coefficients

Sparse modeling has proven over the last decade to be a powerful technique in signal processing. Its goal

is to achieve signal representation using the minimum amount of data while retaining the maximum amount of

information. Sparse coding (assuming given dictionaries for the moment) comes from the solution to an under-

determined systems of equations,

min
αj
‖αj‖0 s.t. y = Ψjαj , (3)

where ‖ · ‖0 is a pseudo-norm that counts the number of nonzero entries. This is a combinatorial problem, usually

approximated using greedy methods like Orthogonal Matching Pursuit (MP) [19]. It is well known that (3) is

equivalent to solving (under assumptions on the sparsity of the signal and the structure of the dictionary Ψj , see

[20] and references therein)

min
αj
‖αj‖1 s.t. y = Ψjαj . (4)

Since HSI data are noisy, we are interested in a modification of (4), that allows sparse representations under

bounded noise, known as basis pursuit denoising [21], or the Lasso [22]. Its nonnegative version is to minimize

(with respect to αj)

R`2,1(y,Ψj) = ‖y −Ψjαj‖22 s.t. S(αj) ≤ t, (5)
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where S(x) =
∑
i x(i), and t ∈ <+ is a threshold that controls the sparsity of the coefficients (smaller t will cause

more shrinkage in the coefficients). Equivalently, we could express (5) in Lagrangian form as

R`2,1(y,Ψj) = ‖y −Ψjαj‖22 + λsS(αj), (6)

where λs is a nonnegative penalty term that balances the complexity and the fitting quality (recall that the coefficients

in αj are constrained to be non-negative). Note that each set of selected atoms (non-zero entries of αj) from Ψj

defines a subspace, and therefore the class/material is represented by a collection of such subspaces, which are low

dimensional due to the sparsity constraint.

Having performed the above optimization for each class (with standard optimization techniques), we can then

classify our data according to (6), assigning to each pixel the class label corresponding to minimum energy (we

assume for the moment a single class per pixel), thus the mapping

f(y) = {j|R`2,1(y,αj) ≤ R`2,1(y,αi), i 6= j,∀i, j ∈ [1, C]}. (7)

Here the model complexity also serves as a discriminative part of the classifier. Specifically, the pixel will be

assigned to the class with minimum reconstruction error and minimum complexity in the coefficient vector. This

classifier has been proposed and used in [23] for texture and handwriting classification, showing advantages of

using both terms instead of only using the reconstruction term as in previous approaches.

C. Dictionary Learning

Originally sparse representations were obtained using fixed “off-the-shelf” dictionaries Ψj ∈ <b×kj , where

kj is the number of atoms, and b is the signal’s dimension (e.g., DCT, Fourier basis, wavelets). It is often more

appropriate to “learn” these dictionaries by adapting them to the data at hand [24]–[28]. State-of-the-art results have

been reported in applications related to noise removal, inpainting, discriminative learning from image databases,

classification, and unsupervised labeling (clustering) [23], [29]–[34].

The dictionary is learned by minimizing (with respect to both Ψj and Aj)

R`2,1(Yj ,Aj) = ‖Yj −ΨjAj‖2F + λS

nj∑
i

S(αji ). (8)

This process of simultaneously learning a dictionary and obtaining a sparse representation is called sparse

modeling (in contrast to sparse coding). This is a non-convex optimization problem usually solved by an alter-

nated minimization scheme, that is, fixing Aj while updating Ψj and vice-versa. The main idea is to break this

minimization in two parts. First, fix the dictionary atoms and perform sparse coding (e.g., using an algorithm like

Least Angle Regression and Shrinkage [35]). Then one fixes these sparse coefficients and updates the atoms of

the dictionary. There are several ways for learning these atoms. The K-SVD and Method of Orthogonal Directions

(MOD) algorithms [25], [36] are widely used in the processing of natural images for this task. In this work, we

use a Projected Gradient (PG) iteration, where we update the i− th atom ψji by the following scheme:
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ψj,ti ← P{ψj,t−1
i }

= max(0,ψj,t−1
i + µ(

∂

∂ψji
R`2))

= max(0,ψj,t−1
i + µ(2(ΨjAj −Y)AjT

i ),

where Aj
i denotes the i − th row of Aj , and µ = 0.9

‖AjAjT ‖ is the step-size parameter, where ‖ · ‖ is the spectral

norm. Each dictionary atom is normalized to have unit norm, projected onto the unit sphere after each iteration.

There are a number of possible advantages of using a compact learned dictionary instead of all the the data samples

as the dictionary. The first advantage is seen from (8), where Ψj is modified such that the actual reconstruction

error is minimized. Secondly, a learned dictionary provides a more compact way of representing a class, kj � nj ,

reducing the sparse coding computational cost (note that in the supervised learning case for example, the dictionary

is learned once off-line).

III. MULTI-LABEL PREDICTION FOR ABUNDANCE MAPPING

Low spatial resolution distorts the geometric features in the scene, and introduces the possibility of having

multiple materials inside a pixel. In addition, partial occlusions caused by elevation differences will also cause such

mixtures. For example, if there are tree branches over a road in the scene, the measured pixels are a combination

of the energy reflected from the tree leaves and from the partially occluded road. Therefore, in general, the pixels

in the acquired scene are not pure. This effect is known as spectral mixing. In general, one may assume that the

pixels in the scene contain mixtures of multiple materials. Therefore, a more realistic approach to HSI classification

is to allow for a pixel to have one or more labels, each corresponding to a material class. We now extend the above

classification scheme to address this more general scenario.

The spectral mixing problem can be seen as a particular case of source separation, where signatures from pure

materials are combined to produce the pixel’s spectral response. Spectral mixing is caused by a variety of physical

factors, many of them often occurring in a nonlinear fashion, and are often difficult to physically model or require

many in situ parameters associated with the characteristics of the target and the environmental conditions at the

time of acquisition. Thus for simplicity of development, and as commonly done in the literature [37], we focus on

a linear mixing model (LMM), that is, each pixel is represented as a linear combination of sources or endmembers.

The coefficients associated with each of these endmembers are called the fractional abundances. These fractional

abundances indicate the contribution of the associated endmember to the analyzed pixel.3

One of the most used models for HSI source separation is the Constrained Least Squares Model (CLS), where

the nonnegative coefficients associated with each pixel are constrained to sum to one; see [37] and references

therein for more details on the CLS and other proposed models. It is also desirable that the abundance vectors be

3Since the learned dictionaries play the role of endmembers in classical HSI analysis approaches, we often call the dictionary and its atoms

“endmemebers” as well, even though these are not necessarily pure materials.
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sparse, meaning that the material at each pixel is explained with as few as possible pure sources. The sum-to-one

constraint of the non-negative coefficients (i.e., that the coefficient vector lines on a simplex), in the CLS model

is known to induce a sparse solution, hence a fixed `1 norm on every coefficient vector. More recently, the Least

Squares `1 (LS`1) model was proposed for this spectral unmixing problem [38], [39]. In this model, the sum-to-one

constraint was relaxed, meaning an `1-norm constraint on the abundance coefficients needs to be minimized, instead

of summing strictly one (no learned dictionary is exploited in these works).

An extension to the problem of spectral mixing can be naturally formulated using the concepts from Section II,

adapting them to the LMM. Here Ψj represents the j−th material and Aj its corresponding abundances. Compared

to the standard LMM, where the endmembers are real spectral signatures, here the endmembers are represented

as a set of subspaces, thus are learned atoms and their combinations and not actual pure materials. This gives

the flexibility to account for material variability caused by factors like noise and non-homogeneous substances. In

addition, the pixels pertaining to a certain class have the flexibility to (sparsely) select the corresponding material

atoms that best fit them, and thus more degrees of freedom for a better reconstruction/representation, still with

a compact representation. Representing endmembers with more than one representative vector has been used for

example in [6], suggesting that endmembers (especially in vegetation) should be represented by a set of spectra,

where the abundances were calculated for each element of this set.

The main idea is to train a dictionary for each class, and then form a block-dictionary Ψ = [Ψ1, ...,ΨC ] ∈ <b×k,

where k =
∑C
j=1 kj . In this way, the sparse coding on each pixel comes from a sparse “mixed” union of subspaces.

In this work, we use the constrained sparse coding step of (6), and select a λS such that it gives an `1 norm of

the non-negative coefficient vectors close to one (typically in the [0.9, 1.1] range). This relaxation avoids the need

to introduce a zero vector included as an endmember (zero-shade endmember), and therefore allowing shade and

dark pixels to be accounted for [40], while also giving sparser results.

After the sub-dictionaries Ψj forming Ψ have been learned, one per class j, the proposed method for HSI

classification and abundance mapping solves the following optimization problem:

min
(αi∈<k)�0

n∑
i=1

‖yi −Ψαi‖22 + λS

n∑
i=1

S(αi) + λG

n∑
i=1

G(αi,wi), (9)

where the first two terms account for reconstruction and sparsity, respectively, and the third term accounts for a

grouping and coherence constraint, which is explained next. With this framework, the `1 energy of the αi coefficients

corresponding to the block Ψj in Ψ indicates the amount of material from the j − th class in the mixture for the

pixel i. Similarly, we can use the reconstruction limited to atoms and coefficients of a given class to determine the

contribution of that class to the pixel i.

A. Imposing Spatial Coherence

Up to this point, each pixel was treated independently from each other (λG = 0 in the equation above). To exploit

the geometric structure in the image, one can make the estimation of the abundance coefficients αi for a given
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pixel to be influenced by neighboring pixels, introducing spatial and spectral coherence in the modeling and coding

process. This coherence will depend both on the pixels’ spectral shape and the coefficient vector similarities. This

can be implemented by defining a function G that behaves as a grouping (coupling) term on the coefficients,

G(αi,wi) = ‖M(αi −
∑
l∈η

wilαl)‖22, (10)

where η denotes the neighborhood of the i−th pixel. We define a weighting function wil = 1
Ci

exp
−‖yi−yl‖

2
2

σ2 , where

Ci is a pixel-dependent normalization constant, such that
∑
l∈η wil = 1, and σ2 is a density parameter controlling

the width of the Gaussian (here set to be the average of the data pairwise Euclidean distance, either local for each

pixel or global for the whole data). This weighting function is close to 1 if the pixels are very similar and 0 if

orthogonal. Its purpose is to compare the i− th pixel with a weighted linear combination of its neighbors. There is

no guarantee that pixels with strong similarities will select the same active set (atoms) from the j − th class sub-

dictionary Ψj , even in cases where they have similar mixtures. We do want these coefficient vectors to be coupled

by similar `1-norm in each block. For this purpose, M ∈ <C×k is defined as M =


11 0 · · · 0

0 12

...
. . .

0 · · · 1C

, where

1j ∈ <1×kj is a vector of ones corresponding to the number kj of atoms per sub-dictionary. The purpose of M is

to compare the similarity, in the `1 norm, of the coefficients from each sub-dictionary, promoting similar per-block

`1 norm for similar pixels.

The neighborhood η is not restricted to spatial neighbors, but also non-local neighbors with strong similarities.

Let the weights be represented in the matrix W ∈ <n×n. This weight matrix is formed by the sum of local and

nonlocal weights, W = Wnl+Ws, where Wnl is a weight matrix associated with similar abundance vectors, and

Ws is the weight matrix associated with the spatial neighbors; W is similar to the matrix used in the nonlocal

means algorithm [41] and the spectral/spatial kernel matrix approach of [42]. Incorporating this grouping term gives

robustness to noise and stability in the coefficient (abundances) estimates, capturing non-linearities and complicated

structures in the feature space. Note that these weights can be calculated prior to optimization (standard techniques

to accelerate non-local means can be used if desired).

The optimization problem in (9) can no longer be solved independently for each pixel due to the coupling in the

coefficient vectors. However, we efficiently solve this by considering (I is an identity matrix)

Ỹ =

 Y

λGWA

 , Ψ̃ =

 Ψ

λGI

 .
We solve the coupling using a standard Gauss-Seidel type of iteration (or primal decomposition), where we iteratively

solve the problem by first calculating the sparse coefficients with no coupling, storing a copy, and then re-calculating

the subsequent coding iteration using this copy.
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This concludes the model for supervised HSI classification and unmixing. We next present experimental results

supporting this proposed framework.

IV. SUPERVISED SOURCE SEPARATION EXPERIMENTS

We consider a series of experiments to test the performance of the proposed algorithm. We use three HSI scenes

described below. We compare our proposed framework with standard methods for HSI classification, that is, an

Euclidean Distance classifier (ED) and a Spectral Angle Mapper classifier (SAM), see below for the exact definitions.

In addition, we include an `1-based optimization scheme that uses all available training samples as dictionary (see

next for a detailed description of where the training samples come from), hence a dictionary of data samples of

much larger cardinality than our compact learned dictionary. Our algorithm is termed the Dictionary Modeling (DM)

when no spatial coherence is imposed, and Dictionary Modeling with Spatial Coherence (DMS) when the spatial

coherence is imposed. For all the following experiments, we set the algorithm parameters to be λS = 0.5/
√
b,

and λG = 0.01 (only for DMS). The weight matrix W was built using a 3 × 3 spatial region surrounding the

pixel, and 4 nonlocal neighbors. A maximum number of iterations for the dictionary learning phase was set to

150, and 5000 for the sparse coding phase. The results were found to be stable to the particular selection of these

parameters, which can in general be done via standard cross-validation. We selected the sparse coding technique

called Least Angle Regression and Shrinkage (LARS) [35], and used the fast implementation in the Sparse Modeling

Software (SPAMS), publicly available at http://www.di.ens.fr/willow/SPAMS/. For DM, DMS, and `1 methods, all pixels

were normalized to have unit norm prior to processing.

A. HSI Data Sets

We process 3 hyperspectral scenes for these experiments, Figure 1:

1) AVIRIS Indian Pines: The Indian Pines is a small portion of the Northwest Tippecanoe County in Indiana,

acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) system in 1992. It consists of a

145 × 145 × 220 datacube reduced to 188 bands after removing water absorption and noisy bands. The data

are publicly available at https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html. The scene consists mainly of

16 classes, mostly vegetation and agricultural crops, and a full scene classification ground-truth is available.

2) HyDICE Urban: The Urban scene was acquired with the Hyperspectral Digital Collection Experiment (Hy-

DICE) sensor over Copperas Cove, Texas. It consist of a 307× 307× 210 datacube reduced to 162 channels

after removing the water absorption and noisy bands. 8 classes were manually selected. The data are publicly

available at http://www.agc.army.mil/hypercube/.

3) HyMAP APHill: The APHill scene was taken with the Hyperspectral Mapper (HyMAP) over Virginia (with

permission from the US Army Engineer Research and Development Center, Topographic Engineering Center,

Fort Belvoir, VA). It consists of a 645 × 400 × 128 datacube, reduced to 106 channels after removing noisy

and water absorption bands. Nine classes were manually selected for the experiments.

Table I summarizes the class and training/testing samples information for each of these datacubes.
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(a) (b) (c)

Fig. 1: HSI cubes used in this work. (a) False RGB of AVIRIS Indian Pines: no patches, all the scene has ground-

truth. (b) HyDICE Urban: patch color corresponds to each of the 8 known classes. (c) HyMAP APHill: patch color

corresponds to each of the 9 known classes. This is a color figure.

B. Experiment 1: Supervised Multi-label Mapping

In the first experiment, we look at the overall training accuracy for the three datasets. We compare our proposed

algorithm with two classical approaches, minimum Euclidean Distance (ED) and Spectral Angle Mapper (SAM).

We also compare this approach with an `1 minimization scheme without learned dictionaries. We define these

classifiers as

1) Euclidean Distance:

fED(y) = {j|‖y − ŷj‖2 ≤ ‖y − ŷi‖2, i 6= j,∀i, j ∈ [1, C]}, where ŷj is the averaged spectra of all training

samples from the j − th class.

2) Spectral Angle Mapper: The SAM is defined as SAM(x,y) = cos−1( xTy
‖x‖2‖y‖2 ), hence the mapping is

fSAM(y) = {j|SAM(y, ŷj) ≤ SAM(y, ŷi), i 6= j,∀i, j ∈ [1, C]}.

3) `1 minimization: Here we use an approximate sparse solution to (4), α∗ = argminα�0 ‖α‖1 s.t. ‖y−Ψα‖22 ≤

η, for some small error η = 0.05. Here Ψ is a matrix with all the training samples available from all classes,

each block Ψj corresponding to the samples from class j (concatenated to create Ψ). We assign a label

following the mapping f`1(y) = {j|R(αj) ≤ R(αi), i 6= j,∀i, j ∈ [1, C]}, where αj is the coding portion

corresponding to the sub-dictionary Ψj for class j and R is the reconstruction error when coding the data

sample (pixel) only with samples selected by αj (equivalent to reconstruction after setting to zero all elements

of α∗ but those in αj). Similar results are obtained with S (the `1 norm) instead of R.

We divided the set of known samples from each class into training and testing sets by random selection for 25

draws. We selected the number of atoms per sub-dictionary to be kj = min(50, nj), where nj is the total number

of training samples for the j − th class. The results are summarized in Table II, showing the average and standard

deviation of the overall classification accuracy for the 25 runs. We make the following observations:
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1) The results show that using the compact learned dictionary in the proposed framework outperforms the other

more classical approaches. Compared to using the data itself as dictionary, a significantly reduced computational

cost is obtained as well.

2) The spatial coherence term significantly improved the classification accuracy in the Indian Pines dataset, mainly

due to the large uniform areas. Also, the ED and SAM methods performed poorly on this data, using averaged

spectra was not sufficient for a good class representation. In contrast, the proposed approach, while simple in

nature, efficiently selects the atoms that best represent the rich classes.

3) Although the classes seem to be more “separable” in the APHill and Urban datasets, leading to relatively good

results using ED and SAM, the proposed approach provides close to 100% accuracy, which could play an

essential role in certain mapping applications.

C. Experiment 2: Mapping of Reconstructed Data From Significant Under-sampling

Recently, a non-parametric (Bayesian) approach to sparse modeling and compressed sensing was proposed in [4],

where most of the data is eliminated uniformly at random, and then reconstructed using a dictionary that is

learned only from the available data. The method automatically estimates the dictionary size, and makes no explicit

assumption on the noise variance. In addition, it can deal with non-uniform noise sources in the different bands, a

problem often encountered in HSI. While the method can reconstruct the data with a high Peak Signal to Noise Ratio

(PSNR), we investigate how well the spectral information is preserved, that is, we test how material classification is

affected after randomly “throwing away” most of the data and then interpolating. In Table III we provide an idea on

how this subsampling and reconstruction affects the spectral angles between the original and reconstructed pixels.

Most of the high angles are due to two reasons: first, small spatial areas could not be appropriately reconstructed,

since the approach uses information from neighboring pixels (spatial window) for interpolation. Secondly, areas

with low SNR fail to be efficiently reconstructed. As an example, the lakes in the APHill scene have the highest

spectral angles, mainly because most of the energy from the sun was absorbed by the water. These problems can be

addressed by an adaptive sampling strategy, instead of the random one here employed for testing the classification

accuracy.

Table IV summarizes the classification accuracies obtained for the HSI datasets under several under-sampling

conditions. We compare our proposed algorithm with the same ones used in Experiment 1. We make the following

observations:

1) The proposed DM/DMS algorithms outperform the other methods in most cases. However, there are some cases

with the IndianPines images were the `1 minimization method with data as dictionary performs slightly better,

particularly in extreme cases were only 2% of the data is used. This difference in performance was mainly on

classes with a small number of training samples (e.g., Alfalfa, Oats, and Grass/pasture-mowed classes). The

learned dictionary was not able to appropriately model the class (this can be easily solved letting the dictionary

be the data itself when not enough training samples are available). Nevertheless, this problem was solved with
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Fig. 2: Effect of the proposed coherence term on Indian Pines. From left to right: Ground-truth, classification with

no spatial coherence, classification with spatial coherence, and reconstructed data (3× 3, 20%) using a dictionary

learned from the original data and spatial/spectral coherence. This is a color figure.

(a) (b) (c)

Fig. 3: Effect of coherence and significant sub-sampling in APHill mapping. (a) Original, (b) mapping after

reconstructing 98% of the data (3× 3, 2%) with no spatial coherence, and (c) mapping after reconstructing 98% of

the data (3× 3, 2%) with spatial/spectral coherence. This is a color figure.

the DMS method, which effectively uses spatial and spectral information from other pixels for a “grouping”

effect in the abundance estimates, which is clearly shown in figures 2 and 3.

2) Classification accuracies are very similar to those obtained using the original datasets without sub-sampling,

especially with the 3 × 3, 20%, and 4 × 4, 20% realizations, thus showing that it is possible to get highly

accurate classification performance with only a fifth of the data. It is worth mentioning that the decrease

in classification accuracy is not due to gross errors in the detection ability of the method, but rather comes

from errors involving highly similar classes, or insufficient training samples. For instance, focusing on datasets
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reconstructed from only 2% of the data and a 3 × 3 spatial window, we observed that in the APHill scene,

most of the misclassified pixels correspond to the “Lake1” and “Lake2” classes, with a 54.17% and 73.50%

accuracy, respectively. From these classes, only 5 pixels were labeled from a class different than the “Lake1”

or “Lake2” class. Similar errors occurred with the “Coniferous” and “Deciduous” classes, and the “Concrete”

and “Road” classes. In the Urban scene, the two classes with the lowest performance for the DM method were

“Road” and “Concrete”, with 80% and 84.1121% respectively, with only 14 samples with misclassification

errors from a different class.

The results shown in Table IV were obtained using training samples coming from the reconstructed images used for

validation. In a more realistic approach, we provide classification results for cases in which the learning process was

done a priori using data from the original dataset (no sub-sampling), and the validation is done on the reconstructed

dataset. The idea is to show that a pre-learned dictionary (which is a compact representation of the classes) could

be used in future acquisitions. These results are summarized in Table V for the HSI scenes after eliminating 80%

of the data.

Finally, we have also tested completely eliminating 10% of the bands, simulating for example a sensor defect,

where the optical arrays for several wavelengths are damaged. In addition to having missing bands, a large percentage

of the rest of the data was removed at random as before. The results are summarized in Table VI. This shows that we

can miss both entire bands and significant amounts of data at random, and still obtain very reasonable classification

results, out-performing all the other tested methods.

D. Intermezzo

We make the following conclusions about the (supervised) experiments shown above:

1) The proposed method is superior in terms of classification performance when compared with standard classi-

fication approaches.

2) Accurate material classification can be obtained even when the majority of the data is missing. This is a clear

example of how the data redundancy in high dimensional HSI can actually be beneficial for several tasks,

including less expensive acquisition and faster transmission (at the cost of more sophisticated post-processing).

We now extend this to the unsupervised case, where there is no data for pre-training of the dictionary.

V. UNSUPERVISED MAPPING WITH A BLOCK-INCOHERENT DICTIONARY

In previous sections we showed a methodology for mapping HSI when we know a priori the classes of interest

(supervised mapping). The first stage consisted of learning per-class sub-dictionaries, and the second stage consisted

of estimating the corresponding abundances. In this section we address the case for which there is no a priori

information about the sources present in the scene, which could be seen as a blind source separation problem

(unsupervised). A significant amount of research has been dedicated to automatically determining these endmembers.

Many of the algorithms are simplex-projection based, where the vertices of the volume enclosing the data are

considered as the endmembers [43]. The classical endmember estimation algorithms assume that there are pure
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pixels in the image. Examples of this are the N-Finder [44], Vertex Component Analysis (VCA) [45], and Pixel

Purity Index (PPI) [46]. Algorithms that do not make this assumption include Dependent Component Analysis

(DECA) [47], Minimum Volume Simplex Analysis (MVSA) [48], and more recently, the Simplex Identification by

Split Augmented Lagrangian (SISAL) method [49], which breaks the unmixing problem into smaller convex (and

simpler) problems.

A second class of algorithms addressing this problem is based on nonnegative matrix factorization (NMF),

attempting to find the matrices Ψ and A such that Y ≈ ΨA. Constrained versions of NMF for HSI unmixing

have been extensively proposed, e.g., [50]–[52]. In addition, works that incorporate a sparsity constraint in NMF

have been proposed in [53], [54], also in combination with a spatial constraint [55]. It is important to mention

that in [55], the spatial constraint enforces similarities in the abundance vectors, while in our approach (DMS) we

enforce local and non-local similarities that are weighted by spectral information. Minimum Volume Constrained

(MVCNMF) [56], is a method for which the NMF is constrained to have minimum volume (thus limiting the

non-uniqueness of the NMF because of the inward force). Finally, Minimum Dispersion NMF [57] was proposed

as a method to deal with very flat spectra, where the constraint is to minimize the sum of the variances of the

endmembers. In contrast with our proposed framework, these approaches force the materials to be represented by

a single spectra, a very limiting model as explained before. In our method we let each data sample select the best

possible sparse linear combination of atoms from a learned endmember sub-dictionary. As seen in the previous

sections for supervised classification, representing a class/material by a single spectra is a limiting factor in terms

of class reconstruction and accurate mapping. This motivates us to extend the above proposed dictionary based

approach to the unsupervised case.

Our framework could be seen as a generalization of a sparsity and spatially constrained NMF, where the sources

contain more than one atom per material. In order to automatically learn the sources online, just for the image

being analyzed, and since the problems is non-convex, we need an initialization procedure such that the learned

sub-dictionary for a given class maintains a relative separation from the sub-dictionaries learned for the other

classes. We could naively set the number of atoms kj per block and randomly select samples from the data, though

doing this offers no guarantee of a valid sub-dictionary separation (and therefore separation between the sources).

In this work, the sub-dictionaries are initialized by a fully constrained NMF (nonnegativity and sum to one of the

abundance coefficients, CNMF). This sets the initial number of atoms per sub-dictionary to be kj = 1 for all the

classes j. Then, we will increase the number of atoms per sub-dictionary block as we progress in adapting the

dictionary to the data. The idea is to eventually find the best class representation by increasing the dimensionality of

the space where the class lives (represented by the sub-dictionary). It is intuitive that increasing this dimensionality

will characterize the material more appropriately. Nevertheless, as the number of atoms per sub-dictionary increases,

the cross-correlation (or coherence) of the dictionary, and in particular between the different sub-dictionaries, will

increase. This has a negative impact in classification, especially with classes that are very close to each other. In

addition, it has been shown in the sparse modeling literature that dictionary incoherence plays a crucial role in

obtaining the correct sparse representation [20]. This is, the dictionary needs to be as incoherent as possible to get
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a proper sparse representation of the signal, noting that if the coherence is maximum, any subset selection from the

dictionary would yield similar solutions, hence losing uniqueness and discriminative power. To overcome this, we

impose an additional constraint for keeping the different blocks of the dictionary as “pure” as possible by explicitly

imposing a degree of incoherence. This is detailed next.

A. Imposing Dictionary Incoherence

Fig. 4: Effect of coherence in the learned dictionary. The lower the coherence, the more separation between sub-

dictionaries, and thus stronger discriminative power. This is a color figure.

The (sub-)dictionary incoherence plays the role of keeping the estimated sub-dictionary (block) for a given

class as orthogonal as possible with each sub-dictionary corresponding to the other classes. As observed from the

illustration in Figure 4, in order to perform classification, the sub-dictionaries representing the classes “Grass” and

“Trees” need to maintain a certain degree of separation, since there are common features in the spectra that are

shared among the classes (e.g., high amplitude in the visible/near-infrared regions). As the number of atoms per

dictionary block increases, the more susceptible the dictionary becomes to these “mixing effects.” To address this,

we define a sub-dictionary incoherence term as [58]

I(Ψj) =
C∑
i6=j

‖ΨiTΨj‖2F . (11)

With this we encourage the sub-dictionary Ψj to be separated from the rest of the sub-dictionaries. Since the atoms

will not be completely orthogonal (e.g., due to the overcompletness of Ψ), we penalize using (11). To update each

of the dictionary atoms ψji , we use the following update rule:

ψj,ti ← P{ψj,t−1
i } (12)

= max(0,ψj,t−1
i + µ

∂

∂ψji
R`2 + I(Ψ))

= max(0,ψj,t−1
i + 2µ((ΨjAj −Yj)AjT

i + λI(ΨΨ
T

)ψj,t−1
i ),
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Fig. 5: Reconstruction Mean Square Error (MSE) as a function of the number of atoms per sub-dictionary for a

single run in the Urban dataset.

where Ψ is the concatenation of the sub-dictionary blocks not including the class being updated, Aj
i is the i− th

row of the coefficients matrix Aj , and λI is the penalty parameter related to the sub-dictionaries incoherence.

Again, each atom is normalized to have unit norm. Note that we update the atoms using the analyzed data Yj

(unsupervised case). In the supervised case, Yj included the samples representing the j − th class, and this was

known a priori. Since we do not have training samples, we set during the iterations Yj as the set of samples with

maximum `1 norm in the corresponding class coefficients. For example, we initialize our algorithm using CNMF.

Then, we split the data by assigning to Yj the data samples whose largest abundance coefficients correspond to

the j − th class. We then proceed to update the dictionaries using this assignment following (12), and once these

are updated, we re-assign the data following the same criteria. This is in the style of classical K-means, but with

sub-dictionaries as “centroids,” a different update rule (12), and an `1 criteria for assignment.

B. Stopping Criteria

In our scheme, we initialize the sparse modeling process using CNMF, and we progress the class representation

by adding an atom (initialized at random) to each sub-dictionary. We desire the best possible class representation,

so we stop adding atoms when the reconstruction error stops decreasing significantly,

({ 1
n
‖Y −ΨA‖2F }kj − {

1
n
‖Y −ΨA‖2F }kj+1) ≤ η, (13)

where η is a threshold specified by the user. This decrease in MSE is illustrated in Figure 5, where after about 6

atoms the reconstruction error stops changing drastically. The algorithm for unsupervised mapping is summarized

in Figure 6.

VI. UNSUPERVISED SOURCE SEPARATION EXPERIMENTS

In this section we test and compare our proposed algorithm with simulated and real HSI datacubes.
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Input: Hyperspectral scene Y, sparsity parameter λS , coher-

ence parameter λG, sub-dictionary incoherence parameter λI ,

and stopping threshold η.

Output: Sparse matrix of fractional abundances A for

yi, i = 1, ...n, and learned endmember dictionary Ψ.

Initialization

• Perform a Constrained Nonnegative Matrix Factorization

(CNMF), kj = 1 for all the classes j,

(A∗,Ψ∗) = arg min
A�0,1TA=1T ,Ψ�0

‖Y −ΨA‖2F .

Simultaneous Learning

While (13) is not satisfied:

• Set kj ← kj + 1 (for all the classes) and initialize new

atoms ψj randomly.

• Set Y j as all data samples with largest abundance `1

norm corresponding to Ψj .

• Dictionary Update Stage:

min
Ψj�0

nj∑
i=1

‖yj
i −Ψjαj

i‖
2
2 + λS

nj∑
i=1

S(αj
i ) + λG

nj∑
i=1

G(αj
i ,wi) + λII(Ψj)

• Abundance Mapping Stage:

min
αi�0

n∑
i=1

‖yi −Ψαi‖22 + λS

n∑
i=1

S(αi) + λG

n∑
i=1

G(αi,wi).

Fig. 6: Algorithm for sub-pixel unsupervised classification in HSI.

A. Simulated HSI Data

We perform a series of experiments to compare the performance of the proposed algorithm with recently developed

unmixing schemes:

1) A fully constrained NMF (CNMF, see references above). This is a standard fully constrained Nonnegative

Matrix Factorization, where the sum to one constraint in the abundance coefficients is strictly enforced. This

will also serve as our initialization algorithm as explained above.

2) Vertex Component Analysis (VCA) [45]. This is a minimum volume simplex approach. This algorithm assumes

that there are pure pixels in the image. This serves as the initialization algorithm for SISAL below.

3) Simplex Identification via Split Augmented Lagrangian (SISAL) [49]. It does not assume pixel purity in the

data.

Both the VCA and SISAL algorithms come from the authors website. The code is publicly available at http://www.lx.it.pt/ bi-

oucas/code.htm.
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The simulated data is generated using the USGS spectral library available at http://speclab.cr.usgs.gov/spectral-lib.html,

corresponding to the AVIRIS sensor, which consists of 500 mineral spectral signatures with 224 spectral bands.

The “true” abundance values are generated following a Dirichlet probability density function (pdf) with density

parameter of 0.1. This distribution guarantees nonnegativity and sum to one in the abundance coefficients. The dataset

is generated with a total of 10, 000 observations, each pixel having a maximum purity of 0.8. The simulations test

the algorithms using the following variants:

1) Additive noise was added to the dataset. The signal to noise ratio (SNR) is calculated as SNR = 10·log( ‖X‖
2
F

‖N‖2
F

),

where X is the noiseless data. We include noise levels of 40, 30, 20, and 10 dB.

2) The number of sources was selected to be 3, 6, and 10.

Our measure of performance for this experiment is the mean squared error (MSE) between the original (ground

truth) and computed abundance values, MSE(Â) = 1
n·C ‖A − Â‖2F . The parameters for the VCA and SISAL

algorithms were chosen to be the default values in the public domain code released by the authors. For our algorithm

we set the sparsity constraint as S(α) ≤ 1, and λG = 0. Each experiment was run 25 times, each time generating a

datacube by drawing at random spectral signatures from the spectral library. The results are summarized in Figure

7. We have tested only the proposed DM, and not DMS, since for this simulated data there is no spatial information.

We make the following observations:

1) While the algorithms perform relatively well, VCA performs poorly mainly due to the assumption about the

presence of pure endmembers. In all cases, SISAL performs better than VCA.

2) The SISAL algorithm has the best performance under high SNR (40 dB). The proposed DM method performs

better under lower SNRs and as the number of sources is increased. This is the case even when the algorithm

is forced to have a fixed sparsity constraint. In addition, the data in this simulation assumes there is no spectral

variability in the sources, while such variability will further favor our proposed technique. In all cases, DM

performs better than CNMF.

(a) (b) (c)

Fig. 7: Tested algorithms performance in terms of abundance MSE for different values of SNR (dB). (a) 3 sources,

(b) 6 sources, and (c) 10 sources. The green bars correspond to the average MSE, and the red bars to the error

standard deviation. This is a color figure.
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B. Experiments with Real HSI Data

We applied our proposed unsupervised algorithms DM and DMS to the three real HSI datacubes. In this

experiment we show three abundance maps for each of the datacubes. We also included the results obtained by

SISAL and CNMF (with parameters manually set to obtain the best results). For all images, we selected η = 0.01

and λI = 0.01 (parameters selected via cross-validation techniques). For the Indian Pines dataset, we show the

results for the estimated “Stone-steel tower” class, the “Grass/Tress” class, and the “Soybeans-min” class. For the

APHill dataset, we selected the estimated abundance values for the “Road” class, the “Coniferous” trees class, and

the “Crop” class. Finally, the three abundance maps shown for the Urban data are the “Road,” the “Soil,” and

the “Rooftop” class. While both CNMF and SISAL are very recent and powerful algorithms developed for HSI

unmixing, still, our proposed approach showed advantages over these methods. Results are presented in figures (8),

(9), and (10). These figures illustrate abundance maps obtained from the computed unmixing coefficients. Each

pixel has a computed vector of coefficients (or abundances), and the presented mappings correspond to the values

of the coefficients for a particular endmember. A dark pixel in the mapping means that the material is not present

or has low presence, while a very bright pixel means that the material is very abundant. For SISAL and CNMF, the

mappings correspond to the coefficient associated with each material (one spectra represents an endmember). For

the proposed DM and DMS, the mapping corresponds to the `1 norm of the vector associated to the endmember

sub-dictionary/class (`1 of the computed αj).

We make the following observations from these experiments:

1) For the Indian Pines image, all the algorithms provided similar results in correctly identifying the stone tower,

but incorrectly estimated high abundance values in other areas. Looking at the “Grass/Trees” class, the DMS

algorithm was the best at identifying the locations of the class, and a clear advantage of the spatial coherence

and a better fitting of the class by using dictionaries is observed. Finally, DM performed best at estimating

the “Soybeans-min” class.

2) Looking at the APHill results, we observe that both DM and DMS gave the cleanest results. For example, the

road estimation of SISAL include pixels pertaining to the lakes and some other wet areas. The CNMF wrongly

estimated the “Crop” class region as “Road,” an effect that is also seen in the “Crop” abundance estimates.

3) For the Urban image, we see mixing effects occurring with the “Road” estimation in both SISAL and CNMF

algorithms, particularly with “Soil.” Also, a high correlation in the abundance estimates of “Rooftop” and

“Soil” is noticed with SISAL and NMF. Again, a clear advantage of a better class representation when using

a learned structured dictionary instead of a single spectra is observed.

Given that we have training and validation data from each of the tested HSI datasets, we also conducted a

numerical (quantitative) experiment to test the classification accuracy of our proposed unsupervised method. Since

we know the locations of the “known” materials, we mapped the estimated sources from the unsupervised case

with the corresponding classes from the supervised case. Table VII summarizes these results for APHill. There

is a significant gain in classification accuracy when compared with the CNMF method (our initial condition), in
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(a) (b) (c) (d)

Fig. 8: Abundance maps corresponding to three classes from the Indian Pines dataset. The first row corresponds to

the “Stone-steel tower” class, the second row corresponds to the “Grass/Trees” class, and the third row corresponds

to the “Soybeans-min” class. (a) SISAL (b) NMF (c) DM (d) DMS.

particular for the “Road” class, for which most of the pixels pertaining to that class were confused with “Concrete”

in the CNMF method. Similarly, most of the pixels corresponding to the “Grass” class are mislabeled as “Trees”

using CNMF (see Figure 11). The only observed deterioration is for the confusion of some “Concrete” pixels with

“Road” and “Gravel,” three very similar classes. This is another example of the importance of a dictionary-based

class representation and classification method, making the proposed DM/DMS a richer and more appropriate model

to deal with high-dimensional HSI.

VII. CONCLUDING REMARKS

We have proposed supervised and unsupervised HSI composition mapping algorithms using learned sparse models.

We reported the results on three hyperspectral datasets, and also showed the potential for a Bayesian compressed-

sensing technique to help in solving acquisition, transmission, and storage issues related to HSI. With this framework,

noise, class variability, and data redundancy are efficiently addressed by a structured sparse modeling classification

technique that incorporates spatial/spectral regularization and class-dictionary incoherence.

While we currently increase the number of atoms uniformly for all sub-dictionaries in the unsupervised scenario,

it will be interesting to do this class-dependent, letting different classes to learn different dictionary sizes. We plan to
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(a) (b) (c) (d)

Fig. 9: Abundance maps corresponding to three classes from the APHill dataset. The first row corresponds to the

“Road” class, the second row corresponds to the “Coniferous” class, and the third row corresponds to the “Crop”

class. (a) SISAL (b) NMF (c) DM (d) DMS.

further exploit the proposed framework by considering adaptive sampling techniques, where sub-sampling is avoided

in areas of limited spatial coverage or high spectral uncertainty. We are also further exploring the capabilities of the

proposed framework to deal with the scenario where entire spectral bands or regions are missing, the preliminary

results here reported are very encouraging. Lastly, we are investigating the possibility to classify directly from the

sub-sampled data, without the need for pre-reconstruction, which is very important for real time applications [59].
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TABLE I: Class labels and number of samples per class for the Indian Pines, APHill, and Urban HSI cubes.

Class Samples

Label Name Train Test

Indian Pines

1 Alfalfa 27 27

2 Cornnotill 717 717

3 Corn-min 417 417

4 Corn 117 117

5 Grass/Pasture 248 249

6 Grass/Trees 373 374

7 Grass/pasture-mowed 13 13

8 Hay-windrowed 244 245

9 Oats 10 10

10 Soybeans-notill 484 484

11 Soybeans-min 1234 1234

12 Soybean-clean 307 307

13 Wheat 106 106

14 Woods 647 647

15 Bldg-Grass-Tree-Drives 190 190

16 Stone-steel towers 47 48

APHill

1 Coniferous 597 598

2 Deciduous 1290 1290

3 Grass 829 829

4 Lake1 120 120

5 Lake2 117 117

6 Crop 792 792

7 Road 123 123

8 Concrete 49 50

9 Gravel 62 63

Urban

1 Road 254 255

2 Concrete 106 107

3 Dark soil 76 76

4 Bright soil 39 40

5 Gray rooftop 417 417

6 Brown rooftop 95 96

7 Grass 338 339

8 Trees 276 277

September 27, 2010 DRAFT



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. X, JANUARY XXXX 27

TABLE II: Results for the first supervised classification experiment. Shown are the mean (first row) and standard

deviation (second row) of 25 runs for three HSI datasets. Best results are in bold.

Image Accuracy (mean and standard deviation)

ED SAM `1 DM DMS

Indian Pines 0.3788 0.4437 0.8639 0.878 0.9352

0.0082 0.006 0.0045 0.0048 0.0038

APHill 0.9006 0.9151 0.9758 0.9894 0.9966

0.0034 0.0031 0.0023 0.0011 0.0009

Urban 0.9013 0.972 0.9894 0.999 0.9992

0.0047 0.0034 0.0032 0.0009 0.0007

TABLE III: PSNR and spectral angles between the original and reconstructed datasets. The first column shows

the parameters selected for the reconstruction, the spatial window size and the amount of available data used for

reconstruction. The spectral angles are in degrees.

Image Reconstruction PSNR and Spectral Angle

Indian Pines PSNR min max avg. median

3× 3, 2% 35.1827 0.6558 27.9661 2.6519 2.2808

3× 3, 5% 42.0383 0.3353 21.9318 1.2400 1.0551

3× 3, 10% 48.0072 0.2864 8.1674 0.7328 0.6849

3× 3, 20% 50.0940 0.2694 8.2588 0.6186 0.5964

4× 4, 2% 36.5539 0.5219 25.9245 2.1256 1.7854

4× 4, 5% 42.7197 0.3121 18.8338 1.1327 0.9553

4× 4, 20% 50.0670 0.2856 8.3672 0.6197 0.5952

5× 5, 2% 36.4205 0.4386 27.2215 2.0617 1.6809

APHill

3× 3, 2% 33.2542 0.5492 56.9784 2.7071 2.0083

3× 3, 5% 38.2726 0.2923 74.2222 1.2897 0.9920

3× 3, 10% 43.8655 0.2559 22.6844 0.9632 0.7928

3× 3, 20% 46.1789 0.3563 14.1513 1.1429 0.9838

4× 4, 2% 37.8549 0.4632 74.1300 2.4906 1.8053

4× 4, 5% 40.0584 0.3383 65.6407 1.6301 1.2753

4× 4, 20% 46.2491 0.3196 19.6792 1.3074 1.0892

5× 5, 2% 33.5847 0.4393 72.7613 2.4333 1.7413

Urban

3× 3, 2% 30.3053 2.5799 61.4310 7.8448 7.1313

3× 3, 5% 38.8684 2.4565 32.9800 6.3067 6.2368

3× 3, 10% 43.0309 2.4738 26.7932 6.0401 6.0933

3× 3, 20% 46.2861 0.4358 21.9183 1.5765 1.2608

4× 4, 2% 32.4952 0.6723 59.0952 4.8124 3.7554

4× 4, 5% 40.6783 0.6273 37.3109 2.4521 1.9213

4× 4, 20% 45.6692 0.4387 23.1958 1.6735 1.3312

5× 5, 2% 32.8143 0.7574 59.6115 4.5828 3.5597
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TABLE IV: Overall classification accuracies for the datasets reconstructed from highly under-sampled data. The

first column shows the spatial window and data percentage used for reconstruction.

Image Accuracy

ED SAM `1 DM DMS

Indian Pines

3× 3, 2% 0.3823 0.3086 0.5070 0.4426 0.7666

3× 3, 5% 0.3742 0.4177 0.7477 0.7381 0.8781

3× 3, 10% 0.3797 0.4332 0.8216 0.8141 0.9001

3× 3, 20% 0.3796 0.4359 0.8339 0.8253 0.9007

4× 4, 2% 0.3819 0.3767 0.6901 0.6650 0.8785

4× 4, 5% 0.3821 0.4272 0.8006 0.8021 0.9014

4× 4, 20% 0.3807 0.4380 0.8467 0.8287 0.9115

5× 5, 2% 0.3801 0.3813 0.7477 0.7724 0.8986

APHill

3× 3, 2% 0.8920 0.8544 0.8976 0.9111 0.9822

3× 3, 5% 0.8885 0.9121 0.9681 0.9736 0.9917

3× 3, 10% 0.8933 0.9119 0.9751 0.9772 0.9917

3× 3, 20% 0.8943 0.9149 0.9782 0.9792 0.9915

4× 4, 2% 0.8991 0.8890 0.9455 0.9546 0.9897

4× 4, 5% 0.8933 0.9169 0.9819 0.9804 0.9950

4× 4, 20% 0.8943 0.9232 0.9862 0.9874 0.9932

5× 5, 2% 0.9028 0.9064 0.9628 0.9739 0.9930

Urban

3× 3, 2% 0.9085 0.8836 0.9334 0.9496 0.9944

3× 3, 5% 0.8911 0.9452 0.9907 0.9963 0.9981

3× 3, 10% 0.8930 0.9645 0.9919 0.9969 0.9994

3× 3, 20% 0.9042 0.9701 0.9894 0.9981 1.0000

4× 4, 2% 0.9123 0.9011 0.9577 0.9807 0.9969

4× 4, 5% 0.9048 0.9564 0.9944 0.9988 0.9994

4× 4, 20% 0.9048 0.9708 0.9888 0.9988 1.0000

5× 5, 2% 0.9135 0.8955 0.9664 0.9907 0.9975

TABLE V: Overall classification accuracy for reconstructed data with only 20% of the pixels used for reconstruction.

The class dictionaries were learned a priori using the original dataset.

Image Accuracy

ED SAM `1 DM DMS

Indian Pines 0.3720 0.4432 0.7811 0.7967 0.8434

APHill 0.8353 0.9269 0.9397 0.9538 0.9691

Urban 0.8936 0.8955 0.9589 0.9670 0.9844
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TABLE VI: Classification results for the Urban dataset when entire bands are missing in addition to the missing

data at random as before. The data is reconstructed from this highly under-sampled data before classification. The

first column shows the spatial window, data percentage, and percentage of bands used for reconstruction.

Image Accuracy

ED SAM `1 DM DMS

Original 0.9079 0.9850 0.9850 0.9981 1.0000

2× 2, 2%, 90% 0.8609 0.8571 0.8797 0.9117 0.9568

2× 2, 5%, 90% 0.8966 0.9586 0.9718 0.9925 0.9962

4× 4, 2%, 90% 0.8910 0.8835 0.9305 0.9718 0.9699

4× 4, 5%, 90% 0.8947 0.9380 0.9474 0.9774 0.9906

TABLE VII: Unsupervised per-class overall classification accuracy for the APHill dataset based on the training and

validation data used in the supervised case. See Table I for the class labels.

Method Class label

1 2 3 4 5 6 7 8 9

CNMF 92.5523 63.6047 17.0688 100.0000 100.0000 100.0000 1.2146 97.9798 92.0000

DM 92.8870 78.9535 67.1894 100.0000 100.0000 100.0000 55.0607 62.6263 98.4000

DMS 99.7490 91.7054 73.8239 100.0000 100.0000 100.0000 63.5628 76.7677 99.2000
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